
UPS Product Development: General Considerations 16-1

Chapter 16: UPS Product Development:

General Considerations

This chapter discusses the UPS product development methodology and tools
that can be used in product development. It also provides recommendations
for organizing your local product development area and the individual product
root directories you will need to create.

16.1 Product Development Considerations
and Recommendations

In this section we will provide some guidelines for product development as it
affects the product’s inclusion in the UPS framework.

Simple scripts which run on any architecture are naturally quite
straightforward to implement under UPS. Products which are obtained from
the outside world (third party) as executable images with no source code are
also generally straightforward. The ones that get complicated are the products
which must be compiled and/or otherwise built for each and every supported
architecture.

16.1.1 All Products (Locally Developed and Third Party)

Shell Independence

The product should run the same way under both shell families, sh and csh. If
the product requires any actions to take place before it will run (e.g., its bin
directory added to your $PATH, some environment variables set), provide a
table file containing these actions. The UPS environment is described in
Chapter 2: Overview of UPS, UPD and UPP v4 and table files in Chapter 36:
Table Files. The functions supported in table files are designed to work in a
shell-independent manner, in general.

16-2 UPS Product Development: General Considerations

Flavor Declaration in UPS

On your development system, we recommend that you declare your products
according to the fully specified flavor of the machine on which you build them
(or on which they were built). We consider this to be very important,
especially if your target systems contain or will ever contain mixed OS releases
(e.g., IRIX+6.2 and IRIX+6.5). This will help to avoid problems when a new
OS release doesn’t run images built on an older one, or vice-versa. You don’t
want to have to go back and comb out which OS release a particular product
instance was built for, you want to be able to tell immediately from looking at
the database. Installers and users also need this information to facilitate their
database maintenance.

Products which have no flavor-dependence at all (shell scripts, for instance),
should be declared as NULL to the database (use the “zero” option, -0; see
Chapter 25: Generic Command Option Descriptions). For other products,
include the entire flavor string of the build platform in the declaration, or the
major portion of that string. For example, if you build on an OSF1 machine
running V3.2, declare your products with the flavor OSF1+V3.2 or OSF1+V3
rather than just OSF1 (e.g., use the flavor level corresponding to the options
-3 or -2 rather than -1)

Policy Regarding Use of /usr/local/bin

Outside Fermilab, in the UNIX world at large, products typically get put in
/usr/local/bin. With this in the user’s $PATH, all the products are
accessible. This practice is inconsistent with the goal of UPS to provide
concurrent versions of products. Therefore only products specially approved
by the FUE working group may write into /usr/local/bin. No other
products should write to this area, or to any other area within
/usr/local.

16.1.2 Products that You Develop

If you’re writing your own product for implementation within UPS, you have
the luxury (and, we might add, the responsibility) of creating it such that it
exploits the important features of UPS, thus making it easy for the user to
install and run, and easy for you or another developer to maintain in the future.
We urge you to follow the guidelines we present here.

UPS Product Development: General Considerations 16-3

Self-Containment and Location Determination

First, design the product such that it is self-contained. It should identify its
location and the location of any required files at run time (as opposed to
compile time). You as the product developer have total control over the
structure and contents of the product root directory, but no control at all over
where the product root directory will reside on a target system.

If you write the product such that it calculates its location at compile time,
you’ll be putting the hard-coded path to your development environment into
the image -- most likely not the correct path on the user machine.

You can choose to define the environment variable $<PRODUCT>_DIR,
which points to the product root directory. In UPS v4, this variable is no
longer always necessary since much of its usefulness is taken over by the local
read-only variable ${UPS_PROD_DIR}, described in section 35.6 Local
Read-Only Variables Available to Functions. However, users will still find
$<PRODUCT>_DIR to be useful since they will have access to it as long as
the product is setup.

As an example of the use of ${UPS_PROD_DIR}, take myproduct written in
perl which requires the file lib/myprod-headers.pl. You should refer
to this file in the perl code as
$ENV::{MYPROD_PERL_LIB}/myprod-headers.pl rather than by
its full path, e.g., /path/to/lib/myprod-headers.pl. In the table
file, set MYPROD_PERL_LIB to ${UPS_PROD_DIR}/lib. You should
make no assumptions about where users will put the file.

As stated above, products should not use or copy files into the areas under
/usr/local.

Reproducible Build Procedure

All products should be built using a build script in order to ensure that the build
procedure is reproducible. If your product is at all complex, we recommend
that you use Makefiles for this purpose. We have created a template product
for creating UPS products, described in Chapter 19: Using template_product
to Build and Distribute UPS Products. It includes Fermi-standard Makefiles,
and automates much of the process. The general UNIX make utility and the
associated Makefiles are beyond the scope of this document, but the subject is
introduced in UNIX at Fermilab, and treated in many standard UNIX texts.

System Independence

The various flavors of UNIX have many differences. You will generally have
to release separate instances of your (compiled) products for the different
flavors. However, the more you are able to insulate your product from
flavor/release dependencies, the easier your product will be to maintain, and
the less rigid it will appear to installers and users.

16-4 UPS Product Development: General Considerations

16.1.3 Third-Party Products Requiring a Hard-Coded
Path

If you’re installing a third-party product, downloaded from the Web or
elsewhere, you may not have the opportunity to code it such that it identifies its
location at run time based on ${UPS_PROD_DIR} or the
$<PRODUCT>_DIR environment variable. Whereas many products never
need to know their location (they only need to be in your $PATH, for example),
many other products do need to know their location in order to locate auxiliary
commands, libraries, utilities, and so on.

Techniques for Implementing these Products

For those that do, the technical note TN0086 Use of "/usr/local/products" now
deprecated, on-line at
http://www.fnal.gov/docs/TN/TN0086/tn0086.html,
describes recommended techniques for implementing the products. Please
refer to it for information. The three approaches it describes are, briefly:

• For a product that is already setup and which contains a script that
requires an interpreter, start the script with #!/usr/bin/env
<interpreter> (e.g., #!/usr/bin/env perl). The env
program will run the first copy of the interpreter it finds on your command
search path, and your script is then executable.

• Create a “wrapper” shell script which sets up the UPS environment, sets
up your product, and then invokes the appropriate commands. (An
example is www v2_6a.)

• Sometimes getting a product setup before one of its scripts is invoked is
not practical, and wrapper scripts may be unacceptably slow to start up.
In cases where the product is considered important enough by the FUE
working group that it must work properly even in the absence of UPS, a
“trampoline” executable is provided, usually in usr/local/bin. The
wrapper script should contain #!/path/to/trampoline.

 When the product is configured, its CONFIGURE action inserts the
product path into the trampoline executable. The wrapper script is then
executable. Note that these products generally need to be declared as
root.

UPS Product Development: General Considerations 16-5

Examples of Products Requiring Hard-coded Paths

Here are examples of situations in which hard-coded paths are unavoidable:

• Pre-built products which have hard-coded paths.

• Products that you can rebuild, but which were not coded with the idea of
calculating where the files sit at run time. You need to tell them where to
look for files at compile time, and this leads to hard-coded paths in the
images.1

• Commands that are not executed in the context of a shell, but rather as a
program. An example is the mh utility slocal (for automatically sorting
and foldering your incoming mh mail). This command is called via a
command line in one of the configuration files (.forward).

In the past for UPS v3 we used the /usr/local/products
convention. We include this information for reference purposes only. This
convention had serious drawbacks. The old (now deprecated) procedure
was standard only on fully FUE-compliant systems (defined in the on-line
document DR0009), and required that you:

• configure, build, and/or (re-)code the product so that the hard-coded
path it uses is
/usr/local/products/{product}/{version} (e.g.,
/usr/local/products/tk/v4_2a).

• write a configure script which creates the directory
/usr/local/products/{product}, and creates in it the
symbolic link {version} back to the real product root directory
(e.g., /usr/local/products/tk/v4_2a is a symbolic link to
/path/to/products/OSF1+V3/tk/v4_2a).

• write a current script that creates a symbolic link called
current in the same directory, pointing to the link for the instance
which is declared as current (e.g.,
/usr/local/products/tk/current is a symbolic link to
/usr/local/products/tk/v4_2a).

1. Most vendors (freeware, shareware, and the few paid packages where you get the
source code and rebuild it) now make it possible to modify the Makefiles so that you can
decide where you want the output files, images, and so on, to go. Unfortunately, these are
still frequently hard-coded at compile time, not run time. Therefore, packages that you
build in this manner on your development system will not be right when installed on a user
system with a different product root directory path.

16-6 UPS Product Development: General Considerations

 You can’t use the construct "| ${MH_DIR}/lib/slocal -user
joe" to identify slocal because the program running this command will
not expand the ${MH_DIR} environment variable. You also don’t want
to spell out the whole actual path because you’d have to edit the
.forward file every time a new version of mh is released.

• cgi scripts, rsh scripts and other situations in which you can’t be sure that
the product will necessarily have been setup when it is called by another
one, and it needs to work anyway. We recommend that you consult with
the UAS group (uas-group@fnal.gov) to determine the best course of
action. Frequently you can create product configuration scripts that copy
or link the product files into the correct location on the target node. In
some cases for cgi scripts, you can have your Web server setup the
product and pass the relevant environment variables.

16.2 Tools for Developing and/or Packaging
Products

The tools that we introduce in this section can be used separately or together.
They are all available as UPS products in KITS. See the on-line
documentation Integrating buildmanager, cvs, template_product,and upd at
http://www.fnal.gov/docs/products/buildmanager/Integrating.html.

16.2.1 Buildmanager

The buildmanager application is a configurable tool which lets you build
software on multiple systems simultaneously, in an organized and consistent
fashion. It allows you to set up standardized build sequences and define
actions to be performed automatically. It can stop if things go wrong, and
allows interaction with various build systems to correct problems. It is
available as a UPS product in KITS. Any system to which you can telnet and
run commands can be used as a build system with buildmanager. See the
on-line documentation at
http://www.fnal.gov/docs/products/buildmanager/.

16.2.2 CVS

It is a common practice to maintain a product’s source code as well as its
Makefile and UPS management files in a CVS repository for development and
maintenance. CVS allows each developer to check out files into a private
working directory and to modify them as necessary. With CVS you can

UPS Product Development: General Considerations 16-7

maintain all the different versions and flavors in a single work area, and you
can pull them out to the separate nodes as needed. Developers working with
prebuilt binaries (downloaded from the Web or purchased from a vendor) can
use CVS for just the Makefile and UPS management files (e.g., the local
README and INSTALL files, the table file, tests, documentation, and so on)
so that they can be properly source-controlled. Documentation for CVS can be
found on-line at http://www.fnal.gov/docs/products/cvs/.

It is useful to be able to use UPS to setup these checked-out areas. One way
that this can be accomplished is by declaring the checked-out area to either the
main or a private UPS database, but this is often cumbersome, as these
checked-out areas are by nature fairly transient.

A better solution is to exploit the UPS capability of setting up a product
instance without having it actually declared to any database. To do this, you
simply need to supply the setup command with all of the necessary
information, shown here:

% setup <product> -r /your/checked/out/area -M <tableFileDir> \
-m <tableFile> -q <qualifierList> -f <flavor>

16.2.3 Template_product

To simplify and somewhat automate the process of building UPS products, we
have designed the product template_product. Once this product is installed
on your system, it can be cloned into a new product area and customized to the
new product. template_product can be used to build products of all types
(shell script, pre-built binary, source code). We discuss this product in detail in
Chapter 19: Using template_product to Build and Distribute UPS Products.

16.3 Directory Structure for a UPS Product
Instance

The top level directory of a UPS product instance is called the product root
directory, and in general it should contain files and subdirectories in which
almost everything related to the product instance resides: the executables, the
library files, the documentation, and so on. The ups directory files (i.e., the
UPS metadata) and the table file usually reside here, but are not required to do
so.

UPS is very lenient in the directory structure it allows. Nothing is required in
all situations beyond a product root directory. Normally product instances
have a table file containing actions that are run during operations like product
installation and setup.

16-8 UPS Product Development: General Considerations

We recommend that you follow a few directory structure guidelines simply to
conform to a generally recognized format. This will make it easy for yourself
and others to identify each file and directory later on. The following is a
relatively complete sample directory structure underneath the product root
directory. Most products won’t require all of these elements. On the other
hand, you may include other directories and/or files not listed here. Elements
which we strongly recommend that you provide (in addition to the executables)
for every product include a README file, man pages, a user guide, test scripts
and example files.

README text file containing information such as origin of the
product (by whom, from where, etc.), support level,
support group/person, caveats and known bugs (may be
contained in the ups directory)

bin directory containing the executable(s)

ups directory containing metadata files and other executable
and data files used during implementation and
invocation; may also contain INSTALL_NOTE
(described below) file and the directories toman,
toInfo, tonews and tohtml. Often the table file
resides here. (This directory is no longer a required
element of a UPS product.)

Default location of the ups directory is directly
underneath the product root (for compatibility with UPS
v3), but it may reside anywhere.

ups/INSTALL_NOTEtext file containing a detailed description of any
installation actions that are more easily performed
directly by the installer rather than by a script (beyond
or instead of running configure and/or tailor
and/or current). This should not be a script. This
file is not usually needed. If provided, mention it in the
README file so that product installers know to run it.

lib directory containing libraries

src directory containing source code

include directory containing include files

doc directory containing a user guide and any other
documentation as appropriate; should include the source
files (e.g., LaTeX, Word) as well as the printable files
(e.g., PostScript)

man directory containing unformatted man pages. The files
get copied into the location specified in
$PRODUCTS/.upsfiles/dbconfig (keyword
MAN_TARGET_DIR).

UPS Product Development: General Considerations 16-9

Default location (for compatibility with UPS v3):
ups/toman/man

catman directory containing formatted man pages. The files get
copied into the location specified in
$PRODUCTS/.upsfiles/dbconfig (keyword
CATMAN_TARGET_DIR).

Default location (for compatibility with UPS v3):
ups/toman/catman

html directory containing the html version of the user guide
and any other documentation as appropriate (automatic
copy of files to standard area defined by
HTML_TARGET_DIR not implemented in UPS v4)

Default location (for compatibility with UPS v3):
ups/tohtml

news directory containing news files to be posted to a
newsgroup (automatic copy of files to standard area
defined by NEWS_TARGET_DIR not implemented in
UPS v4)

Default location (for compatibility with UPS v3):
ups/tonews

Info directory containing any text files that are to be
displayed as a login announcement via the Info feature.
The files get copied into the location specified in
$PRODUCTS/.upsfiles/dbconfig (keyword
INFO_TARGET_DIR). Info is generally used to
communicate to users about the Fermilab computing
systems events, (e.g., shutdowns), software upgrades
and other systems-related information.

Default location (for compatibility with UPS v3):
ups/toInfo

test directory containing test scripts and any other
test-related files

examples directory containing example files to help users learn
how to use the product

Product Documentation Storage

Each different type of product documentation (e.g., man pages, html files,
PostScript files, and so on) must reside in a separate subdirectory. The
subdirectories usually reside under the product root directory, but do not have
to. In the product’s table file, you should use the keywords

16-10 UPS Product Development: General Considerations

XXX_SOURCE_DIR as listed in section 28.4 List of Supported Keywords
(e.g., MAN_SOURCE_DIR, INFO_SOURCE_DIR) to identify the directory
in which each form of documentation is maintained. For example:

CATMAN_SOURCE_DIR = ${UPS_PROD_DIR}/catman

MAN_SOURCE_DIR = ${UPS_PROD_DIR}/man

INFO_SOURCE_DIR = ${UPS_PROD_DIR}/Info

UPS currently requires that all files in a directory specified by
XXX_SOURCE_DIR be of the corresponding file type; you cannot mix file
types.

The ups/toman directory and its subdirectories man, catman and
toInfo are used as defaults in UPS v4 for backwards compatibility. This
structure is not necessarily our recommendation. If a product comes with man
pages, Info files, html files and so on, we recommend that you leave them
where they are, and simply specify their locations in the table file. If you are
writing your own, you can put them in subdirectories directly under the
product root directory, which is generally the most convenient place.

In UPS v4, NEWS_SOURCE_DIR and HTML_SOURCE_DIR are not
implemented.

